经济学原理

首页 » 常识 » 预防 » 三则专给聪明人看的经济学小故事丨趣财经
TUhjnbcbe - 2021/3/8 13:42:00

◎文丨王治平

经济学不仅仅具有“经世济民”的宏大意义,它更是一种独特、丰富而又深刻的思维方式。

它并非是人们想象的那种枯燥无味的“沉闷的科学”,而是充满了睿智的愉悦,可以令人尽享思维的乐趣。

当然,能得到这种快乐的你也必得是个具有足够智慧的聪明人,否则恐怕难以领略这思想高地上的无限风光。

如果说“数学是思想的体操”的话,那么我要说的是,“经济学是聪明人的开心果”。

1汽车还是山羊

将近20年前的年,美国《检阅》杂志的“玛丽莲”专栏上,刊登了一道有趣的数学游戏题,结果引来了从小学生到研究生的无数人的参与,在美国轰动一时。在给编辑玛丽莲小姐的1万多封来信中,竟有1千多封是具有博士头衔的读者写的。

这道题目是这样的。有三扇可供选择的门,其中一扇后面是一辆汽车,另外那两扇后面都是一只山羊。

假设人们都喜欢汽车。游戏主持人让你先随意挑选一扇门,比如说你选了1号门,这时主持人打开了另外一扇门(比如说是2号门),里面是一只山羊。

现在主持人给你一次新的机会:“为了有较大的可能性得到汽车,你可以换选剩下的那扇门(3号门),当然也可以坚持原先的1号门。”这时你会怎么选择?

编辑玛丽莲小姐公布的答案是:应该换选一扇门!也就是说,开始你选了1号门,如果主持人打开了里面是山羊的2号门的话,你应该换3号门,而如果主持人打开了里面是山羊的3号门的话,你应该换2号门。

总而言之,你应该换选一扇门。

答案一公布,读者们、特别是那些具有博士头衔的人,纷纷来信表示不同意见。他们说,这真是一个令人难以置信的答案。

他们认为,主持人既然把没有汽车的那扇门打开了,那么剩下的两扇门后面,是汽车还是山羊的可能性各占一半,概率是相同的,所以不用换。他有1/2的概率得到汽车。

读到这里,我要请你停下来做一个思考,你觉得是编辑玛丽莲小姐说的对呢,还是那些博士们的意见正确?概率论专家会告诉你,换选以后得到汽车的概率更大。

其逻辑是这样的:假设你第一次选中的是没有汽车的门(这有2/3的概率),当主持人又打开了一扇没有汽车的门,这时你换选,就必定能得到汽车了。

而假设你第一次选中的是里面有汽车的门(这有1/3的概率),当主持人又打开了一扇门时,如果你换选,就必定得不到汽车。也就是说,换选,得汽车的概率是2/3,而不换,得汽车的概率只有1/3。你想明白了吗?

精通概率论的数学家决定换选的答案似乎是正确的。但你若是一个经济学家,你的思想不会就此止步。作为一个真正的经济学家,一般来说,他的心灵空间更为广阔,他的心路历程更为漫长,他的思考要比普通人更为深入。

我们知道,司马懿围攻诸葛亮的空城时,他不知道里面是否有埋伏,但他知道诸葛亮是谨慎的,而诸葛亮之所以敢用空城计来对付司马懿,是因为他知道司马懿知道自己从来是谨慎的。所以,信息的掌握和利用至关重要。

在这个故事里,我们还很难说,玛丽莲小姐和那些博士们究竟谁对谁错,因为人们都忽略了一个重要的信息,即游戏主持人在打开另一扇门之前,他是知道还是不知道里面藏的是什么?

这个信息非常重要,它是我们作出正确判断的一个重要约束条件。如果他事先知道里面是什么,那么他打开里面是山羊的那扇门的动作包含着很有价值的信息,这样的话,概率论专家也就是玛丽莲小姐的答案才是正确的。

但如果他自己事先并不知道里面是什么的话,那么他随机打开一扇门、里面恰好是一只山羊,这样的话,博士们的意见却是正确的。

因为这时未打开的两扇门中,击中汽车的概率是相等的,都从原先的1/3变成了1/2。并且考虑到换选而不中的后悔痛苦要甚于不换选而不中,所以还是不换选的好。

当然,一般来说,游戏主持人是事先知道里面是什么的,因为这才能使考察智商的游戏进行下去,否则就有使游戏夭折的可能。只有当我们明白这一点以后,我们才可以说玛丽莲小姐说的是对的。

2一个猜数字的游戏

20多年前的年的某一天,美国《金融时报》上,刊登了一则奇怪的竞猜广告,邀请人们参加。每个参与者必须在0到之间选一个整数寄过去,谁的数字最接近所有数字之和的平均数的2/3,谁就是赢家,可以赢得价值超过1万美元的奖品——协和航空从伦敦到纽约的头等舱的往返机票。

这个游戏是芝加哥大学的理查德·H·泰勒教授设计的。如果你要参加这个竞猜,你会选一个什么数字呢?(假设参与者众多,因此你个人的数字对平均数的影响可以忽略不计。但若参与者较少,你的数字会对平均数有较大影响,也需将它考虑在内。)

因为我不知道别人会怎么选,只好先假设大家都会在0到之间随机选,这样的话,所有数的平均数应该是50,因此我当然应该选33,因为33最接近50的2/3。这些人的思考只“走了第1步”。

马上有人会想到,别人也会同样这么想。如果别人也都这么想、大家都选33的话,这时的平均数就是33,我就应该选33的2/3、即22。这些人的思考算是“走了第2步”。

但如果有人再进一步想,大家都选22的话,我就应该选22的2/3、大约是15。这些人的思考是“走了第3步”。

接着,选15的2/3、即10的人,这些人的思考“走了第4步”。选10的2/3、即7的人是“走了第5步”。选7的2/3、即5的人是“走了第6步”。选5的2/3、即3的人是“走了第7步”。选3的2/3、即2的人是“走了第8步”。选2的2/3、即1的人是“走了第9步”。

依此类推,随着你的思考的深入,这个数字越来越小。如果——我说的是如果——如果每个人都是如此这般的理性,都能将逻辑思维进行到底的话,最后这个数字就会停留在1上。因为1的2/3最接近1。每个人都选1的话,每个人都猜对了。

作为精通博弈论的数学家,你选1的答案是正确的。但你若是一个经济学家,你的思想不会就此止步。作为一个真正的经济学家,一个最重要的、对世界的基本认识是,人与人是不一样的。

“青菜萝卜,各人各爱”,每个人的偏好不同,每个人逻辑思维的理性(或曰愚蠢)程度也是不同的,我们不能认为所有的人都一样的聪明或愚笨。

我们把抱有应该选50的2/3、即33这种想法、并做这样选择的人称为逻辑思维“停在第1步的人”;把选33的2/3、即22的人称为逻辑思维“停在第2步的人”;把选22的2/3、即15的人称为逻辑思维“停在第3步的人”;把选15的2/3、即10的人称为逻辑思维“停在第4步的人”。

依此类推,他们的理性程度逐步加深,也即愚蠢程度逐步减弱。

然后我们需要对应征答案的这群人做一个大致的判断,他们中间不同理性(或曰愚蠢)程度的人各占多大的比重。然后把这个比重作为权重,加入到平均数的计算中去。最后再以这个平均数的2/3,作为自己的选择。

很多经济分析师都在做着这样的技术经济分析,但你以为这就一定正确了吗?如果人们都读到我的这篇文章,他们也都会按照这种方法进行这么算计。这时候你与他们的区别就在于你们各自对应征人群不同理性(或曰愚蠢)程度的判断的正确性了。

有人说,“秀才遇到兵,有理说不清”,这除了别的问题外,首先可能就是你对对方的逻辑思维停留阶段的判断有误。其次是要知道,在一对一的博弈中,你并不需要做出超越对方很多“步”的对策,你只须超越对方一“步”就够了,多了反而纠缠不清。这跟下棋是一样的道理。

3排队打水的故事

上个世纪70年代末期,我们国家刚刚从文化革命的蒙昧黑暗中走出,迎来了理性的曙光,那时候举行的首届华罗庚数学竞赛,极大地吸引着热爱科学和智慧的人们。

当时我正是求知欲望十分强盛的青年时代,对此自然十分

1
查看完整版本: 三则专给聪明人看的经济学小故事丨趣财经